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The main objective of this paper is the characterization of the cooling schedules under which
a simulated annecaling algorithm converges to a scl of desired states, such as the set where some
cost function is minimized. In particular, thus generalizing the results of Ilajek {9]. The method
we follow is based on the observation that in simulated anncaling algorithms the “temperature”
remains approximately constant for sufliciently long times. For this reason, we may exploit bounds
and eslimates which are valid for singularly perturbed (approximately) stationary Markov chains
and obtain interesting conclusions for the simulaled anncaling algorithin. In the course of developing
our result on simulated anncaling we derive certain results on approximately stationary singularly
perturbed Markov chains which scem to be of independent interest.

The structure of the paper is the following. In Scction 2 we assume that we are dealing with
a Markov chain in which each of the onec- step transition probabilitics is roughly proportional to a
certain power of ¢, where ¢ is a small parameter. We then present an algorithm, consisting of the
solution of certain shortest path problems and some graph theoretic manipulations, which provides
estimates for the transition probabilitics of the Markov chain for any time between 0 and 1/e. Then,
in Section 3, wec indicate how the procedure of Section 2 may be applied recursively to produce
similar estimatcs on the transition probabilities for all times. In Scction 4 we use the results of

Section 3 to characterize the convergence of the simulated anncaling algorithm.

. MARKOV CIIAINS PARAMETRIZED BY MALL PARAME’

In this Scction we derive order of magnitude estimates on the transition probabilities of a non-
stationary Markov chain. Qur results are based on the assumption that such order of magnitude
information is available on the one-step transition probabilitics of the Markov chain.

We start with some notation. We use N and Ng to denole the posilive and the nonnegative
integers, respectively. We also let ¥ denote the sct of functions f{0,00) ~ (0, c0) such that for
cvery n € Ng there cxists some ¢, > 0 such that f(e) < cnc™, Ve > 0. Notice that U has the
property that f(e)/e” € U, Vf € U, ¥n € N. Also notice that c'/¢ € U, for any ¢ € (0,1).

We consider a (gencraliy non-stationary) finite state, discrete time Markov chain X = {z(¢):t> 0}
with state space {1,...,N}. For any t>0 we let g;(t) = P(z(t + 1) = j|z(t) = i) and py(t) =
P(z(t) = j|z(0) = i). We assume that some structural information is available on this Markov
chain. More precisely, let there be given a collection 4 = {a,;:1 < 4,5 < N} of clements of

NouU{oo}. Let f € U and let Cy, C; be positive constants. We assume that for some ¢ > 0 we have
2
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Cre™ < q,'j(t) < Cae™i, vt> 0, ifa.-,- < oo, (2.1)
0 < qs{t) € f(o), V20, ifayj = oo. (2.2)

We call A the structure of the Markov chain X. We make the following assumption on A:
aix < ag + aji, Vi, 5, k. (2.3)

We shalt discuss later how this assumption may be removed. For the rest of this scction we assume
that A, C,,C, [ are fixed and we denote by M (A, Cy, C2, f) the sct of Markov chains for which
(2.1) and (2.2) hold. (Occasionally we usc the shorter notation M, provided thal no confusion may
arise.)

We classify the states in the state space by considering a Markov chain in which only those
transitions from ¢ to j with a;; = 0 are allowed. In particular, a state i is called transient if there
exists some state j such that a;; = 0 and a;; > 0. Othcrwise ¢ is called recurrent. In view of
assumption (2.3), this is cquivalent to the conventional definition. Let TR, R denote the sets of
transicnt and recurrent states, respectively. For any ¢ € R, we let R; = {j: a;; = 0}. We then have
j € I if and only if j € R and ¢ € R;; we thus obtain the usual partition of the set of recurrent
states into ergodic classes. Also, notice that, for any ¢ € TR, there exists some j € R such that
ai; = 0.

Gur first result provides order of magnitude estimates on the probability that a recurrent
state j is the first state to be visited, starting from a transient state i. We use the notation T =
min{t> 0: z(t) € R}. We also usc the convention that ¢® = 0.

Proposition 2.1: There exist F > 0 and ¢ € U such that for any e > 0, X € M., t € TR, € R we
have

Cie®r < P(x(T) = j|z(0) = i) < Fe®5 + g(e). (2.4)

Proof: Let us fix some j € R. We define, for a € NgU{o0}, Sa = {i € TR: a;; = a} and Q, =
{t € TR:a,; > a}. We then define pa,e = supxen, maxieq, P(z(T1) = 5| z(0) = i). We first prove,
by induction on a, that for any a < oo there exists some Fp > 0 such that py . < Foc®, Ve > 0.
This is clearly true for @ = 0. Suppose it is true for all a less than some positive integer 8. Let
1 € @y and X € M. Noticc that for any state k we have a;x + ax; > a,;> . Using (2.1) and the

induction hypothesis we obtain

A—-1
Pa(T)=j|a(0) =i) < 3 D P(A(T) =j|=(1) = k)P(a(1) = k| =(0) =) +

a=0 k€S,
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(1) € Qg |2(0) = i) ax P(e(T) = 51 a(1) = 1) + P(a(1) = j|(0) =4) <

-1

Yo 3 Fa™Cae® +(1 = Cy)pp, + CaP <
a==0 KES,

[N max{F,}C2 + Cz]cp +(1—C\)pg,e.
a<lp

Taking the supremum of the left hand side over all ¢ € Qg and all X € M, we obtain, for some

constant F,

poe < FP +(1-C)pp,e

from which it follows that the induction hypothesis is also true for g + 1.

['inally, we assume that 1 € S.. Then,
P(=(T) = j|=(0) =+) <

P(z(1) € TR, (1) € Seo | 2(0) = §) + P(z(1) = 7| 2(0) = i) + P(z(1) € Sao | 2(0) = §)poo,e <

Nf(f) + (1 - Cl)Poo.e-

Thus, pes,e < (N/C1)/(€), Ve > 0. This completes the proof of the second inequality in (2.4). The
first incquality is a trivial consequence of (2.1). o

Let us mention another method for proviné Proposition 2.1. We could first prove it for
stationary Markov chains in M, because in this case there are explicit formulac for the absorption
probabilities. (Such is a result is obtained in [12].) Then, we notice that p, . is bounded above
by the absorption probabilitics which would result if an adversary was allowed to choose g,5(t) at
each Llime ¢ after observing the current state, subject to the constraints (2.1} and (2.2). It follows
from standard results in Markovian decision theory that the optimal policy for the adversary is a
stationary one and thercfore the bounds obtained for stationary Markov chains also apply to the
nonstationary ones. Unfortunately, this method docs not scem to work for our subscquent results
because they correspond to a maximization over a finite horizon for which stationary policies are
not in general optimal.

Lt us also point out that Proposition 2.1 is false if the assumption (2.3) is removed.

The main result of this section is based on the following algorithm which provides important
structural information on the long run behavior of Markov chains in M,.
Aigorithm: (Input: A = {ay;:1 < 4,7 < N} and B; Output: V = {V(i,5):1 < ¢,5 < N})

4
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Lletej=a;;—1,ili €N, JER, jE R and ¢;; = a,j, otherwise. (Notice that ¢;; > 0 always
holds.)
2. Solve the shortest path problem from any origin ¢ € R to any destination 57 € R, with respect to
the link lengths ¢g; and subject to the constraint that any intermediate state on a path must be an
clement of 2. For example, the Bellinan algorithm may be used: Vy(i,5) = 0, if 1 = j; Vy(¢,5) = oo,
if 17 j and

Va+1(i,4) = Lnei'r;{V,.(i, k) + ckj}. (2.5)
Let V(z,7) be the length of the shortest path (which is obtained after at most N stages of the

Bellman algorithm suggested above).

J.IF{eER,jE€ TR, let

V(i,j) = Lrgg{V(i, k) + cxs} = ’r‘réilr;{V(i, k) + axj}. (2.8)
4. I jE TR, let
V(i,j) = minfeq + V(k,5)} = min{aw + V(k, 5)}. (2.7)

Notice that the output V{z, 7) of the above algorithm may be intcrpreted as the length of the
shortest path from ¢ to j subject to the constraint that all states on the path belong to R, except
possibly for the first and the last one. We continue with a few clementary observations on this
algorithm: .

Proposition 2.2: (i) V{({,7)=> 0, Vi, 5.

(i) V(¢,5)> 1, Vi,V € TR.

(iit) V(3. 5) < V(i, k) + V(k, 5), V1,5, k.

(iv) If 5 ¢ R and j' € Ry, then V,,(i,5) = V,(3, ), Vi,n. Also, If € R and i’ € R;, then V,,(i,5) =
Val?', 1), Vi, n.

Proof; Part (i) follows from the shortest path interpretation and the nonncgativity of the c;;'s. Part
(ii) follows from (2.6) and the fact that ax; > 1, whenever k € R and j € TR. Part (iii) is clearly
truc for £k € R, due to the shortest path intcrp;-ctation. So, assume that £ € TR. lLet us take
shortest paths from 1 to k (of length V¢, )) and from k to j (of length V(k, j)) and concatcnate
them. This produces a path from i to 7, of length V (i, k)+ V(k, 5), such that all intermediate states,
except from k, belong to R. If k; and k3 are the predecessor and the successor, respectively, of & in
this path, we usc (2.3) to conclude that ¢y, x + ckr, >ck,k, Which shows that k may be climinated

from this path, to produce a path from i to 7, with all intermediate clements belonging to 2, and
5
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with length less or equal than V(i, k) + V(k, 7), as desired. Finally, for part (iv), we use assumption
(2.3) to see that ¢i; = ay; = 0, whenever £ € R and 5 € I, The result follows fromn the shortest
path interpretation. e

We notice that, as a consequence of part (iv) of the proposition, the algorithm neced not be
carriced out for all states. It suflices Lo consider Lransient states and one representative from each
ergodic class R;.

The following proposition cstablishes the relevance of the V (i, 5)’s to the Markov chains under
study.
Proposition 2.3: For any C3 > 0, there exist positive constants Gy, G, G3, G4, with G4 < 1, and

some g € U such that, for any ¢ > 0, for any Markov chain in M, and any states i,  we have
Cilc(t = NN < pii(t) < GpeV ™) 4 x,G3Ghe® +g(e), Vt € [N,Ci/é, (2.8)

where x; = 0, if € R, and x; = 1, otherwise. (The upper bound in (2.8) is also true for t € [1, N].)
In particular, there exist G; > 0, Gz > 0, g € U such that

GV ) < p.-,-(%) < G“V(id)_*_g(e), (2.9)

Proof: Notice that for any ¢ € R, § ¢ R; we have ¢;;(t) < Cae, Vt. It follows that P(z(t + 1) ¢
R;|z(t) € R;) £ NCy¢, from which we casily conclude that there exists some Fy > 0 such that

P(z(t) € Ri|z(s) € R) > F1, 0<s<t<Csfe,Ve>0,VX € M, Vi€ R. (2.10)

We now start the proof of the lower bound in (2.8). If V(i,5) = oo, therc is nothing to prove,
so we will be assuming that V{7, j) < oo. We first assume that i € R and j € R. Then, therc exists
a sequence § = 1y, 1y, ...,ip = j of clements of R, (with n < N) such that Y02} ciiv,, = V(5,7)
and such that ay,,,, 2 1, Vk. Let k € N and suppose that there cxists some Fi > 0 such that, for
alle > 0 and for all X € M,,

P(z(t) € Ry, | 2(0) = §) > Falc(t — k + 1)*'eXmi “ter, Ve g [k—1,C/e.  (2.11)

We then have
P(z(t) € Ry,,, | 2(0) = i) >

t—1
Y Pla(t) € R, 12{s + 1) € Riy,,) Plals + 1) € Ry, |2(s) € Re,) P(s(s) € Riy |2(0) = i) 2

=0
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t—1

> (Fk(c(a SUTR)) it M )Cnt""'“' >

a=k

R t—1
(I-‘;,l"zC.)czu-. Futieng Z(c(a —k+ 1))t (2.12)

o=k

Clearly, there cxists a constant I, such that

t—-1
Y (s —k+ 1) > FiE-k)k, e

s=k

Inequality (2.10) shows that (2.11) holds for k = 1. We have thus proved by induction on k that
(2.11) holds for all k. Notice that

Pla(t) = j|2(0) = i) 2 P(a(t) = | =(t ~ 1) € R;) Pla(t - 1) € B | =(0) = 1) >

bttt htvodtecbadumineecd i el

C P(z(t - 1) € R, |z(0) = 1),

which completes the proof of the left hand side of (2.8), for the case where i € R and j € R. ‘
Suppose now that 1 € R, 7 € TR and let & € R be such that V(i,5) = V(i, k) + ax;. If .

axj = oo, then V(i, j) = oo and there is nothing to prove. So, assume that ax; < oo. Then,

P(a(t) = 7] 2(0) = i) 2 P(a(t) = | a(t — 1) = k) P(a(t — 1) = k| 2(0) = i) >

Cres P(z(t — 1) = k| 2(0) = 1),

Given that we have already proved the lower bound for pix(t), the desired result for pi;(t) follows.
Finally, let § € TR. The result follows similarly by choosing k € R so that au + V{k,j) =
V (i, j) and using the inequality l

P(=(t) = §[2(0) = i) > P(z(1) = k|=(0) = §) P(a(t) = 7| =(1) = k).

We now turn to the proof of the upper bound in (2.8). Let i € R be fixed. We define B, =
{FERV(i,5) =a}, Ta = {j € TR:V(5,5) = a}, E<a = Up<aLp. We also define similarly

£>a, T<ay Tsa. We will prove by induction that for any a < oo the following statements hold:

{§kq): There cxists some G, such that Ve > 0, VX € M, V5 € E3, and Vt < C3/¢ we have
pij(t) < Ga,e".
(ST,) There exists some G/, such that Ve > 0, VX € M,, Vj € T, and V¢t < C3/e we have
piJ(t) < GLCQ.




Statement Sy is trivially true, with G, = 1. We now prove STy. (Notice that Ts , =TR.)

Now,

Plz(t + 1) € TR|2(0) =1) <
Plz(t+ 1) € TR|z(t) € TR)P(z(t) € TR |2(0) =)+ Plz{t + 1) € TR|z{t) e ) <

(1= C1)P(=(t) € TR |2(0) = i) + NCye. (2.13)

T

Since i € R, P(z(0) € TR|z(0) = i) = 0 and (2.13) implies P(z(t) € TR|(0) = i) < (NCq¢)/Cy,
Yt > 0, which proves ST;.

>

¢ Now let a be some positive integer and assume that statements SEg_; and ST are true, for
[ all 3 < a. We will prove that SE, and ST,4) arc also truc. We first need the following Lemma.

Lemma 2.1: If j € J = Eq(qu)UT<a and k € K = E3oUT 5 (a41), then V(i,5) + ajx2a + 1.

Proof: (i) If j € E<(actys k € Ea, then V(i,7) + aze = V(i,5) + cju + 12V (i, k) + 12 a + L.

(i) If j € E<(a—1)) k € T (aq1), then V(i,5) + ajx = V(i,5) + cix 2V (i, k)>a + 1.

(iii) If § € Tgay k € E>g, let I € R be such that V(i,1) + ai; = V(i,7). Suppose that | € R,.
Then, V(i,l) = V(i,k)>a and V(i,j) = V(i,l) + ay;>a + 1, which contradicts the assumption

J € T<o We thus assume that | € Rx. Then, V(i,7) + ajx = V(i,) + aij + a2 V(i, 1) + an =
» V(i 1) + cix + 12 V(i k) + 12a + 1.

(iv)If j € T<a, k € Ts(a41) let L € R be such that V(i,{) + ay; = V(3,5). Then, V(i,5) + ajx =
‘ V(i )+ ay + ap 2 V(a0 + a2V (i, k)>a+ 1. e
b We now use the induction hypothesis and Lemma 2.1 to obtain
[
[ Plz(t +1) e K |z(t) e J)P(z(t) e J[2(0) =¢) <
Q Y. Pla(t+1) = k|={t) = )P(a(t) = j|=(0) = i) <

keK,jeJ

3 Y. Cee®rGeVE) < (NPCyG)e
[ kEK,jEJ
* where G = max{Gs_,G}; B < a}. It follows that
] P(z(t) € K |2(0) = i) < (N2C2G)e*1C3/e, Wt € [1,Ca/é),

which proves SE,. Finally,

P(z(t +1) € Tsas:1|2(0) =1) < (1 = Ci)P(2(t) € Toasr]z(0) = i) + NGoe®Cae + N2CyGe® !
8
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which shows that
P(2(t) € Tsa+1|2(0) = 1) < (1/C1)YNGLCa + N CG)®*!, V€ [1,C3/e].

This proves ST, and completes the induction.

We have thus completed the proof of the upper bound in (2.9) for the case where i € R and
V(t,7) < oo. The proof for the case i € R and V(i, j) = oo is very simple and is omitted. We now
assume that ¢t € TR. Let T be the random time of Proposition 2.1. Then, for some F > 0, G > 0,
g,9',9" € U, we have
{ pij(t) <

. P(T > t)+ 3 Pa(t) = j12(T) = k, T < ) P(=(T) = k, T < t]2(0) = i) P(T < t]2(0) =) <

' rER

(1= C)Yt+ Y [GeV ) 4 g(o)][Fest + g'(e)] <
kER

(1-=C)Yt+ NGFeV() 4 g"(¢), vt € [1,C3/€l.

‘ This completes the proof of the proposition. e
Notice that the upper and lower bounds are tight, within a multiplicative constant independent
! of ¢, when t = 1/e. For smaller times the bounds are much further apart. It is not hard to close

this gap, although we do nol need to do this for our purposes. In particular, the exponent in the

term (¢(t — N + 1))V in the lower bound may be reduced. This may be accomplished with a minor
modification of the induction hypothcsis in the proof of the lower bound. The upper bound may be
also improved in a similar manner.

The remainder of this section is devoted to showing that the assumption (2.3) on the structure
of Lhe Markov chains ur-er study is not an essential restriction. Roughly speaking, we will estatlish
that our results arc applicable to any Markov chain which is apcriodic in the fastest time scale in a
strong scnse to be defined below.

Let there be given a set of nonncgative integers 4 = {a,;: 1 < ¢,7 < N}, not necessarily
satisfying (2.3). Let us define 8;; as the length of the shortest path from i to j, with respect to the
link lengths a,;. (we require a “path” to have at least one hop; thus, 8;7# 0, in general.) We make
the following assumption on A:

Assumption AP: There cxists some positive integer M with the following property: for any m> M
and for any ¢ such that 8;; = 0, there cxists a path (1), ¢a, ..., ,n) such that #, = t,, = i and which

has zero length (with respect to the link lengths ay;).
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For any Markov chain whose structure is deseribed by A, meaning that the estimates (2.1), (2.2)
arc valid, assumption AP requires the following: if we substitute 0 for ¢, and decompose the resulting
Markov chain into crgodic classes, in the usual manner, then each of the non communicating classes
of rccurrent states is aperiodic. However, this requirement is not suflicient for Assumption AP to

hold.

It can be shown that if A satisfies assumption AP, then M can be chosen to be smaller than
i N2 (This is rclated to the fact that the “index of primitivity” of any primitive nonnegative matrix

is bounded above by N? — 2N + 2; for more details, secec Chapter 2 of [13].)

: Now suppose that A satisfies assumption AP and let M be as preseribed in that assumption.
' Given some positive constants Cy, Cq, some [ € U and some ¢ > 0, consider the set M (4, Cy, Cy, f)

Let Q be some positive integer. For any X € M, (4, ¢1, ¢z, f), let us define X @ to be the discrete time
3 Markov chain obtained by sampling X cvery @ time units. Finally, let 8 = {8i;:1 < 4,5 < N}.
{ Due to their definition as shortest path lengths, the cocflicients B,; satisfy (2.3). The following

Proposition cstablishes that the cocflicients §;; describe the structure of the sampled Markov chain
X2, at least when the sampling period @ is chosen large cnough.

Proposition 2.5: Suppose that A satisfies Assumption AP. Then, there exists some @ > 0, some posi-
tive C, C% and some f' € U such that {X?:X € M4, C1,Cx, f)} is a subsct of M(B,C%,CY%, ).
Proof; Let B = max{8;;: Bi; < oo} and Q@ = max{N(B + 2), M + 2N}, where M is the constant

of Assumption AP, Let us fix some 2, 7. Consider an arbitrary sequence of @ transitions from i to
J- The probability that this sequence occurs is bounded above by C?é{"!. Therc are less less than
N @ such sequences. lence, P(z%2(1) = 7|z%(0) = i) < NQC?ca‘i, which shows that X @ satisfies
the right hand side incquality of (2.1), with C; replaced by C) = (NC,)? and with a;; replaced
by Bij.

In order to show that the left hand side inequality in (2.1) also holds for the Markov chain X9,
it is sufficient to produce a scquence of cxact‘ly (2 transitions leading {rom 1 to j for which the total
length (w.r.t. aqj) is less or cqual than 8;;. This is vacuously true if Bi; = oo; we thus assume
that f,, < oo. We proceed as follows: find some path from ¢ to 5 of length f;;. Then find some &
which appears on this path at least (B + 2) times. (Such a k exists because @> N(B + 2).) Then,
32 8i; >(B + 1)Bix, which shows that 8y, = 0. Now, find a path from ¢ to k with length equal
to Bik, as well as a path from & to 7 with length Bx;. Let ny, ng be the number of hops in these
paths, respectively. Without loss of generality, we may assume that ny < N and ny < N. Then,

find a path from k to k (i.c. a cycle) which has zeto length and exactly @ — ny — ng hops. (This is

10
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possible due to Assumption AP and beeause Q@ ~ ny — 1 >2Q ~ 2N > M). Finally, merge the three
paths to obtain a path from 1 to j with length 8;; and with exactly @ hops. e

Using the above result, Proposition 2.3 becomes applicable to an appropriately sampled version
of a given Markov chain, assuming condition AP. We notice that Proposition 2.3 will provide us
with cstimates of the transition probabilitics only for thosc times which are integer multiples of Q.
However, it is casy to show that the same cstimatcs are also valid for intermediate times as well.

Using a more complicated reduction procedure it is possible to apply an appropriately modified
version of Proposition 2.3 to all discrete Markov chains, including periodic oncs.

We close this section by pointing out that there is nothing special about the cocflicients ay;
being intcger. For example, if the a;; arc rationals we could introduce another small parameter §
(to replace ¢€) and another set of integer cocfficients f;j, so that §Pis = ¢™i, Even if the ai;'s are
not rational, ncither are their ratios rational, the proof of Proposition 2.3 remains valid, as long as

min{a;;}> 1. This can be always achicved by redefining the small parameter €.
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PProposition 2.3 allows us to determine the structure of & Markov chain X € M, in the first of
the slow time scales, that is for times of the order of 1/c. However, we notice that the transition
probabilities P(x(1/¢) = j|z(0) = #) satisly (2.1), (2.2), (with a new choice of Cy, Cs, f) provided
that we replace ay; by V(i, 7). Morcover, duc to part (iii) of Piopesition 2.2, the cocllicients V (3, 5)
satisfy the triangle incquality (2.3) and, thercfore, Proposition 2.3 becomes applicable once more.
This yiclds cstimates for the transition probabilitics P(z{1/€?) = j|z(0) = ¢). This proccdure may
be repeated to yicld estimates for I’(z(1/c?) = j|z(0) = ¢), for any positive integer d. To summarize,
we have the following algorithm:

Algorithm Il (Input: A4 = {ay;: 1 < 4,5 < N}, satisfying (2.3); Output: for cach d € Ng, a
collcction V¢ = {V4(i,5):1 < 4,7 < N} and a subset R? of the state space.)

L Let VO(i, §) = aj, Vi, j.

2. Having computed V¢, let R? be the sct of all states such that V4(i, 5) = 0 implies V4(5,1) = 0.
(TR? will denote the complement of R and, for any i € R4, let ¢ = {j € R*: V4(s,5) = 0}.)

3. Let V¢, R? be the input to Algorithm 1; let V9+! be the output returned by Algorithm I.

The remarks preceding Algorithm IT establish the the next proposition. (Notice that when we
usc Proposition 2.3 to obtain estimates for t = 1/e?, the unit of time becomes 1/¢4~1. For this
reason, the variable ¢ in Proposition 2.3 must be replaced by te“"l.)

Proposition 3.1: Given some A satislying (2.3) and some d € N, let V'4(4, §), R?, be the collection of
integers and the subsel recturned by Algorithm 1. Then, for any positive constants Ci, Cz and for
any f € U, there exist positive constants Dy, Do, D3, Dy < 1 and g € U, such that, for any € > 0

and for any Markov chain X € M4, Cy, Cy, f) we have
Dy(e(e* 't = N)Ne*69) < P(z(t) = j|2(0) = i) < Dae¥ "9 4 x; Dy DL ™ V7 6) 4 (),

Ve e [N/ 1/, (3.1)

where x; = 0, if i € R4~! and x; = 1, otherwise. (The upper bound in (3.1) is also valid for
t € {1/e4=, N/e371].) In particular, there exist Dy, Dy > 0, g € U such that

D169 < py; L < Dae¥ ) 4 g(e). 3.2
L pr

We continue with a few remarks on the quantitics comnputed by Algorithm 11

Proposition 3.2: (i) For any d, 1, j, we have V4(i,5) < V(i k) + +V 9(k, 5).
12




; (ii) For any d, we have R4+'C R9,

(i) VG, 5) + Ve, k) > VorstedhG k) vi g, k, ¢, d.

Proof: (i) This is an immediate consequence of part (iii) of roposition 2.2.

(ii) Suppose that i € R4+, Then, V4+Y(i,i) = 0. Using part (i) of Proposition 2.2, we conclude
that s ¢ TR, or, cquivalently, i € RS.

(iit) Using Proposition 3.1 twice, there exist constants Dy, D; such that

NN

DV +VGR) < p(z(el‘- + :—c) = k|z(0) = s) < Dae”™ (i, k).

Morcover, this incquality is true for all X € M, and for all ¢ > 0. Letling ¢ be arbitrarily small,
we conclude that the claimed resuit holds. o
As a corollary of ’roposition 3.2 we conclude that some of the upper bounds of Proposition 3.1
arc true cven for times smaller than 1/e4-1.
Corollary 3.1: If i € R?, or if j € R?, or if V{1, 5) < V(4,§), Ve < d, then there cxists some C > 0
such that
pii(t) < CeV*69), wre(0,1/¢%], VX € M,,Ve > 0. (3.3)

Proof: If i € R4, then V4(i,i) = 0. For any ¢ < d, and for any j, we may apply part (iii) of
Proposition 3.2 to obtain V41, 5) < V4(¢,§) + V(s, §) = V°(¢, 5). A similar argument leads to the
same conclusion if j € RY. Now, given some ¢ < 1/c?, find some ¢ such that t € [1/e5~!, 1/€°]. We
then use Proposition 3.1 to obtain p;;(t) < D¢V (4] < DeV (id), o

Inequality (3.3) is in gencral false if its assumption fails to hold.

We continue with a few remarks on the applicabilily and usclulness of Algorithms [ and II.

N Looking back at Algorithm I, we sce that in order to determine V(i,5) for i € R and j € R,
we only nced to know the coeflicients a;; for £ and j belonging to R. This has the following
implication for Algorithm II: in order to compute the cocfficients {V4+!(4,5): 1,5 € R?}, we only

) need to know the coefficients {V4(1,5): ¢,5 € R4}. Since R**'C R4, it follows that the cocflicients

- {Ve+1(4,5): 4,5 € R%*'} may be computed from the cocflicients {V4(i,5): i,5 € R%}. Thus, if

we arc only interested in determining which states are recurrent for each time scale (as well as in

determining the corresponding ergodic decomposition) we may climinate, at cach stage of Algorithm

I1, the states which have been found to be transient, that is the clements of T'R%. This obscrvation,

together with the fact thal we only nced to carry out the algorithm for just one representative

from cach class ¢, should result in a substantial amount of savings, were the algorithm to be

implemented.
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Algorithm 11 is also applicable to continuous time Markov chains. For example, let there be
given a stationary (for simplicity) Markov chain whose gencrator A, is a polynomial in ¢ and where
¢ is an unspecified positive parameter. Then, the transition probabilitics, over a timc interval of
unit duration, satisfy incqualitics (2.1), (2.2) for a suitable choice of a;;. (In fact, the ay;’s may be
rcad-ofT from the Taylor serics expansion of e+, or, cquivalently by solving a shortest path problem;
the details are omitted.) Morcover, it can be shown that these cocflicients a;; automatically satisfy
assumption (2.3), so that Propositions 2.3 and 3.1 may be applicd to the discrete time Markov chain
obtained by sampling the continuous time Markov chain at integer times. Finally, an clementary

argument shows that the estimates obtained are valid for non - integer times as well.

We comparc Algorithm Il and Proposition 3.1 to the results available in the literature. Therc has
been a substantial amount of rescarch on singularly perturbed stationary Markov chains 1,2,3,4,12].
Typical results obtain exact asymptlotic expressions for the transition probabilitics, as a small
parameter € converges to zero. These asymptotic expressions are oblained recursively, by proceding
from one time scale to the next one, similarly with Algorithm II. Each step in this recursion involves
the solution of systems of linear equations and, possibly, the evaluation of the pseudoinverse of some
matrices [1], which may be computationally demanding, especially if we are dealing with large scale
systems. However, we may conccive of situations in which we are not so much interested in knowing
the values of the transition probabilitics, but rather we want to know which cveants are likely to
occur (over a certain time interval) and which eveats have asymptotically negligible probability (as ¢
goes to zero). For the latter case, a non—numerical, graph-thcoretic, method is more natural. Such
a method (for stationary Markov chains) is implicit and easy to cxtract from the results of [12].

Algorithm II also accomplishes the same.

On the more technical side, it does not follow from the literature, neither is it a priori obvious,
that there exist integer coeflicients V4(i, ) such that inequalities of the type (3.1) hold. The
existing results provide approximations for those transition probabilitics which do not vanish as ¢
approaches zero [1,2,3,4,12] but much less is known about the asymptotic behavior of the vanishing
transition probabilities. Furthermore, the techniques which are usually employed are tailored to
stationary Markov chains (c.g. perturbation theory of lincar operators) and do not scem applicable
to the analysis of non-stationary chains. The discussion following Proposition 2.1 suggests one
method for applying results for stationary chains to non-stationary oncs but it docs not scem to
be universally applicable. Let us also point out that Proposition 3.1 is fairly casy to derive for

“ncarly decomposable” Markov chains [3]. This is not the case for more gencral Markov chains; in

14
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particular, the existence of transicnt states which feed into dilferent ergodic classes are the main

source of dilliculty {12].
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In simulated anncaling [6,10] we arc given a set § = {1, ..., N} of states together with a cost

function J:S ~+ N to be minimized. {Our restriction that J takes integer values is not significant.)
The algorithin jumps randomly from one state to another and forms a Markov chain with the
following transition probabilitics:
P(z(t + 1) = j | z(t) = 1) = Q(¢, 7)) exp[min {0, —(J(5) — J(i))/ T(t)}],
P(z(t + 1) = i|z(t) =d) =1 - ) Pz(t +1) = j|=(t) =),

i
where the kernel Q(1, 7) is nonnegative and satisfies 3° Q(4, j) = Land T(t) > 0 is the “temperature”

ifjgi,  (41)

(4.2)

at time ¢. It is known that if 7°(¢) decreases to zcro slowly cnough, then z(¢) converges (in probabil-
ity) to the sct at which J is minimized [5-9,11]. We are intercsted in determining how slowly T(t)
must converge Lo zcro, so that convergence to the minimizing states is obtained. This issue has been
resolved by [ajek [9] under some restrictions on the structure of Q(¢, 7). We shall derive shortly the
answer to this question in a more general setling. Moreover our method establishes a connection
between simulated annealinz and the structure of singularly perturbed stationary Markov chains.

We formulate the problem to be studied in a slightly more general manner, as follows. Suppose
that we are given, a stochastic matrix P¢, (whose ij-th cntry is denoted by pf;) parameterized by
a positive parameter ¢ and assume that there exist positive constants Cy, Cp and a collection {4 =
{aj: 1 < 4,7 < N} such that a,; € NyU{oo}, V1,7 and such that p{; = 0, whenever a;; = oo and
Cie*r < pi; < Cae™9, Ve € (0,1], whenever a; < oo. Finally, we arc given a function (cooling
schedule) e:No — (0,1). We are interested in the Markov chain z(t) with transition probabilities
given by P(z(t + 1) = j[z(t) = 1) = pg-‘).

Clearly, the simulated annealing algorithm is of the type described in the preceding paragraph,
provided that we identify €(t) with e~1/T(t) and provided that we define a;; = oo, if Q(4,5) = 0,
17 7, and a,; = max{0, J(5) — J(i)}, if Q(3, )5 0, i7#£ 3. Also, a;; has to be accordingly dcfined.

We now return to our general formulation. We thus assume that 4, C;, C; are given, togcther
with the schedule {¢(t)}. We assume that A satisfies (2.3) and we dcfine, for any d € Ny, the
quantities V'4(i, 5) and the sets ¢ by means of Algorithm 1 of Section . Our main result is the
following.

Proposition 4.1: Assume that for some integer d> 0,

Z €e4(t) = oo,

t==0

(4.3)
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f: edt(t) < oo. (4.4)

t=0
Then,

(i) lime—oo P(z(t) € R |2(0) =1i) =1, Vi.
(ii) For any i € R4, limsup,_ o, P(z(t) = i|z(0) = i) > 0.
Proof: The main idea of the proof is to partition {0, 00} into a set of disjoint time intervals [tx, tx41)
such that z(t) is approximately stationary during each such interval, in the sense of Section II, and
then use the estimates available for such Markov chains.

The proof for the case d == 0 is rather casy and is omitted. We present the comparatively
harder proof for the case d> 1.

We start with the proof of part (i) of the proposition. We dcfine ¢ = 0 and

1 . 1 1
trey =tk + m:j, if e(tg + Cd—_m) Zit(tk), (45)
tr+1 = max{t: ¢(t)> %f(tk)}, otherwise. (4.8)

(If tx41 as defined above turns out to be non-integer, we may assume that it is truncated to the
first integer below it.) We dcfine Ay, (respectively, Ag) as the set of all k’s such that ¢i4; is defined
by (4.5) (respectively, (4.6)). We will need the following propertics of the scquence {¢(tx)}.

%e(t,‘) < €ft) < e(te), VEE [tr,trsa] (4.7)
Y tr) = oo, (1.8)
kEAL
f: ez(tk) < oo (49)
k=0

Let f(k,1) be the cardinality of A,N{l,...,k — 1}, for k>1. Then, for any C € (0, 1),

co k
3 3= )Y ®De(tr)e(ts) < oo (1.10)

k=0 (=0

k
i 1-C)Y*(t) =0, Vece(0,1) 4.
kgn;o;,( C)Y*(t) =0, Vee(0,1) (4.11)
Proof: Incqualitics (4.7} are an immediate conscquence of (4.5), (4.8).

We notice that for any k € Ag, k' € Ag, with & > k, we have ¢(tx) < (1/2)¢(tx). Hence,
o0
D ete) < (0) Y 27* < oo (4.12)
kEAs k=0

17

.'-_._._....._....-_ -~y

- -

L R e o o




Sl Sl A St it M e A e CEMA A IAAC B A A M i e S fed el ek Aok Sk Sk A S Aral Jnh Gl UL el ot oA SR uie o

Finally,
Yo dte) = Y etk —t] = D cHtu)ltrrr — t] = D CltR)ltesr — ta]2
kEAL kEAL k=0 kEAs
Yo - Y ) = oo,
t=0 kEAg

which proves (4.8).

From (1.12) we conclude that 35, 4. 3(tk) < o0. Also,

- =] oo

Y Z 62(tk) = Z (.d+l(t;‘)[tk+1 - tk] < 2d+! Z Cd+l(t) < oo,

- kEAL k=0 t=0
E which proves (4.9).

f Given any C € (0,1), we define a constant a by [2(1 — C)]* = 3/2, if 2(1 — C)2 1; otherwise,
S

- we let @ = 1. Let B = {(k,{): k>l and f(k,{)=>a(k — 1}}. Then,

oo k
ST =Y *Net)(t) < Y0 D (1= CF (b)) < oo
k=0 I==0

(k/d)eB

because (1—C)® < 1 and ¢(k) is square summable, by (4.9). Now notice that ¢(t;) < 2= (k=0)+1(kD¢(t)),
if k>1. Hence,

Y. -0Y®Idr)(e) < 3o (201 - O ®Nam ) <
(k,0)gB, k21 (k,1)EB, k=1

2. B3/2)4(1/2) () < oo,
k>t
which proves (4.10). The proof of (4.11) is similar and is omitted. o
We now define

So = R® = {i:if V4(i, 5) = 0 then V4(j,1) = 0},
Sap1 = {1 € R4:i g SoU...US, and 35 € S, such that V4~1(¢, j) = 1},
To = {i € TR*"': 3j € Spsuch that V4-1(j,i) = 1}

and we let Ty be the complement of Tp in TR4=!. Notice that (Uny 05x)UToUT: = {1,..,N}.
Also, if § € S,, n% 0 and V4 !(1,5) = 0, then 5 € Rf" and 5 € S,. (For a proof of this fact,
if i € S, then i € R9Y; 50, if V4=1(i,5) = 0, then V4='(j,i) = 0 and thercfore j € R{™". Let
1 € Sa_; be sech that V4-1(4,1) = 1. Then, V4-!(5,1) = 1. So, cither j € S, and we are done,

18




ho AR i S A - M R R W T . - - VRN CiiaY ~ 1 e

or j € SgU...USn~1. In the sccond case, the same argument shows that 1 € SpU...USn—1 which is a
contradiction.)

We let y(k) = z{tx). We nced estimates on the transition probabilities of the y(k) process,
These are obtained by noting that, for any k, the Markov chain {z(t): t € [ts,tx+1]} belongs to
Men)(4,27KCy, Cy,0), where K = max{a;;: aij < oo}. Since tyyy —tx < 1/(e="(tx)), Corollary
3.1 may be used to obtain upper bounds. Also, for k € Ay, try1 — te = 1/(¢?!(Lx)) and thercfore
Proposition 3.1 may be uscd Lo obtain lower bounds. In more detail, we have:

Lemma 4.2: There are constants F > 0, G > 0, such that, for cvery k € Ny we have

(i) If k € A, then P(y(k + 1) € Sp|y(k) € Snr1) 2 Fe(ty), Yn. (4.13)
(ii) P(y(k + 1) & Sa | y(k) € Sn) < Ge(ty), Vn. (4.14)
(iii) Py(k + 1) € SoUTo | 9(k) € So) < GeX(tx). (1.15)
(iv) P(y(k + 1) & SoUTo | y(k) € To) < Gefts). (4.186)
(v) P(y(k + 1) € To | y(k) € So) < Gc(ty). (4.17)
(vi) I k € A, then P(y(k + 1) € So | y(k) € To) >F. : (4.18)
(vii) If k € Ay, then, for all i, P(y(k + 1) € TR |y(k) = i) < 1 — F. (1.19)

Proof; (i) If § € Sa41, then (by definition) there is some j € S, such that V4~1(1, 5) = 1. The result
follows from the lower bound in (3.2). :
(ii) Let ¢ € Sy, 7 € Sn. We have shown carlier that we must have V2~ !(¢,5)> 1 and the result
foliows from (3.3).

(iii) Let € Sg and j € SoUTo. If § € Sa, n 0, then j € RY; hence V4(4, 5)> 1. Therefore, using
the definition of V¢, we have 1 < Vi(i,j) < V4(i,i) + V4-1(i,5) — 1 = V41(i,5) — 1. Hence
V4-1(i, 5)> 2. Finally, if j € Ty, then V4~1(4, j)> 2, because otherwise we would have j € Tp. The
result follows from (3.3).

(iv) Let i € Ty and j ¢ SoUTo. Let us also choose some I € Sg such that V4—1(l,¢) = 1 (which exists
by the definition of Tp). If 5 € S, n£ 0, then V4—1(1,5)> 1, because otherwise VI~!(l,5) = 1,
which contradicts the discussion in the proof of part (iii). So, for this case the result follows from
{3.3). Supposc now that j € T;. For any ¢ < d — 1 we must have V°(i,5)> 1 because otherwise
(using Proposition 3.2) V4=(l,5) < V4=1(l,{) + V(,5) = 1, which contradicts the assumption
J € Ty. The result follows again from (3.3).

(v) This is immediate from V4=1(i, 7)> 1, Vi € R4, Vj € TR4-! (Proposition 2.2, part (ii)).

(vi) Let i € Ty. Since i € TR4™!, there cxists some j € R4~ such that V9-1(4,5) = 0. By the

previous discussiun, such a j cannot belong to Sy, for n> 1. The result follows from (3.2).
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(vii) Similarly, for any 1 there cxists some j € R4~ such that V4~'(4, 7) = 0 and the result follows
from (3.2). e
Let
Iy = P(y(n) € SouTo, 0 < n < k|y(0) € So),

Qx = P(y(k) € To [y(n) € SoUTo, 0 < n < k-1, y(0) € S).
Using (4.17), (1.18), we obtain

Qr+1 < G(te) + (1 = X F)Qn,

where xx = 1 if £ € AL and x; = 0, otherwise. So,

k
Qx < G de)(t - FY®D,
=0
Using (4.15), (4.18),
Hepr > [1 = Cc(te)Qx ~ Ce2(t)] H (1.20)

Now, ¢(tx)Q« is summable, by (1.10); also, ¢?(x) is summable, by (4.9). Hence lim infy—.oo Fx > 0.
More intuitively, once the stale enters Sp, there is positive probability that it never leaves SoUTp.
Conscquently, the total flow of probability into So from S; must be finite. llence, using (4.13), we

have
[ <]

Y ) Py(k) € 81) < .

k=0

We will prove by induction that for all n> 1,

o0

D (te)P(y(k) € Sn) < oo. (4.21)
k=0

Using (4.13), (4.14), we have
P(y(k + 1) € 8a) 2 P(y(k) € Sn) — Ge(tx)P(y(k) € Sn) + xxFe(te)P(y(k) € Snvr).  (4.22)

By telescoping the inequality (4.22) and using the induction hypothesis (4.21), we see that

E:"ao xikt(te)P(y(k} € Sni41) < 0o0. Also, ZkEl\s e(te)P(y(k) € Sa +1) < Z,‘GM e(ty) < oo
(becanse of (4.12)) which completes the induction step. Using (4.21) and the fact that ¢(tx) sums to
infinity we conclude that lim supy_ o, P(y(k) € SoUT R®~!) = 1. We show next that the probability
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of transicnt states goces to zero. Incqualities (4.14) and (4.19) imply
Ply(k +1) € TR*™Y) < Ge(ts) + (1 — xu F)P(y(k) € TR®™Y).

Thus,
k
P(ylk+1) € TR') < (1= F)! %0 1+ G Y (1 = FY Dty

=0
which converges to 0, as k tends to infinity, duc to (4.11). We may thus conclude that lim sup,_ o, P(y(k) €

So) = 1. By repeating the argument that led to (1.20) we can sce that the probability that y ever

exits SoUTy, given that y(k) € Sp, converges to zero, as k—oo. (This is a consequence of the square

summability of ¢(tx).) It follows that limg_o P(y(k) € So) = 1. Finally, for any t € [t,tx+1] we

have P(z(t) € S¢)> P(y(k) € So) — Ge(tx), which converges to 1, as k—oo. This completes the proof

i of part (i) of the proposition.

1 For part (ii) of the proposition, in order to avoid introducing new notation, we prove the

equivalent statement that if 3.2, €9(t) < oo, then limsup,_, o, P(z(t) = i|z(0) = 1) > 0, Vi €

R?-!. So, let i € R¥~! and consider the sct RY™!. For any j & R¢™!, we have V9-1(,5)> 0 and, .

thercfore, (using Corollary 3.1), there exists some G > 0 such that
Ply(k +1) g R |y(k) € R{™") < Ge(ts), k.

Since we are assuming that 3 ;0 o €4(t) < oo, it follows (as in the proof of (4.9)), that To5o o €(ts) <
co. Conscquently,

inf P(y(k) € RV | y(0) =) > 0. (4.23)

Finally, for any j € R¢™! we have V4-1(5,i{) = 0. Hence, using Proposition 3.1, there exists some
F > 0 such that
P(y(tks1) = ily(te) € R') 2 F. (1.24)

By combining (4.23), (1.24), we obtain the desired result.

Corollary 4.1: Let the transition probabilities for the simnulated annealing algorithm be given by

{4 1), (4.2). Consider cooling schedules of the form T(t) = ¢/ log L. The smallcst constant ¢ such
that, for any initial state, the algorithm converges (in probability) to the set of global minima of J,
cquals the smallest d such that the sct of global minima contains RS,

Proof; Let d” be the smallest such d. llaving identificd exp[—1/T(t)] with ¢(t), we sce that the algo-
rithm converges appropriately if and only if 352, exp[—d” logt/e] = oo. Equivalently, ) Dbein g(=d"/e) —

0o, which is cquivalent to d* < ¢c. o
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Proposition 4.1 can be applied to any continuous time simulated annealiog algorithn, because in
that case we may sample the Markov chain at integer times and condition (2.3) will be automatically

truc. For discrete time algorithms, even if (2.3) fails, the result is still valid for any structure A

~—— T

such that the cstimates (2.8) of Proposition 2.3 are true (with an appropriate choice of V (3, j)). We

have secn in Scction II that this is the case for a much broader class of Markov chains. In fact, we

-, ™, - w .

3

conjecture that Proposition 4.1 is always true, provided that the sets R? arc correctly defined.
Another possibility for generalizing Proposition 4.1 cotncs by allowing the schedule ({t) to be

non-monotonic. In fact the proof goes through (with a minor medification in the definition of the

~ T T — .

scquence {tx}) if we only assume that there cxists some C > 0 such that ((t) < C(s), V¢>s, which
allows for mild non-monotinicily. On the other hand, if ¢(t) is allowed to have more substantial
variations, then the conclusions of Proposition 4.1 are no more true. For a simple example consider
the Markov chain of Figure 1, together with the schedule €(t) = t~!/2 i t is even, and (t) = 1/¢,
if ¢ is odd. For this schedule, the largest integer for which 352 o ¢4(t) = oo is equal to 2. Also,
R? = {3}. On the other hand, P(z(t) = 3|z(0) = 1) does not converge to 1.

We have claimed that our resuit generalizes the results of [9] and we end the paper by supporting’
this claimn. Hajek’s result characterized d° in an explicit manner, as the maximum depth! of local
minima which are not global minima, under a “weak reversibility” assumption, which is cquivalent
to imposing cecrtain restrictions on the structure A. OQur characterization is less explicit because
instead of describing d° we give an algorithin for computing it in terms of A. Nevertheless, for the
class of structures A considered in [9], we can use our Algorithm II to show that R? is the set of
all local minima of the cost function J, of depth d + I, or more. Hence, the d° produced by our
algorithm is the smallest d such that all local (but not global) minima have depth d or less, which
agrecs with the result of [9]. We do not present the details of this argument since it would amount

to rederiving a known result.

1. The depth of a state i is defined as the minimum over all j, such that J(j) < J(i), of the
minimum over all paths leading from i to 7, of the maximum of J(k) — J(5), over all k’s belonging
to that path; the depth of 1 is infinite if no such j exists.
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